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1. Introduction
Damage to existing building structures in mining areas can be cau-

sed by a number of construction and environmental factors, including 
mining impacts. They can be seen on the surface in the form of con-
tinuous or non-continuous ground deformations [6, 38] and mining 
tremors [23, 41]. The damage may concern both structural and secon-
dary members [8]. This is also the case with prefabricated reinforced 
concrete buildings erected in industrialised construction systems [15], 
currently accommodating circa 1/3 of Poland’s inhabitants (approx. 
12 million people). In addition, these are usually large-sized multi-
family or public buildings, where disturbances in the comfort of use 
resulting from their damage are of great importance.

Most frequently, the process of damage is initiated not by a single 
factor but by many factors at the same time. This makes the problem 
regarding the evaluation of the causes of damage complex and dif-
ficult to describe from an analytical point of view. In the context of 
mining impacts, the situation is further complicated by uncertainty 
regarding predictions of deformations that may occur on the ground 
surface as well as mining tremors [19].

In practice, it is often necessary to carry out such an evaluation 
procedure for a large number of building structures erected on a giv-
en mining area. This fact disqualifies the FEM numerical approach, 
which is ineffective in this case. Statistical models seem to be the only 
way to deal with the problem.

A group of popular and very effective methods for detecting dam-
age in concrete structures also includes the so-called non-destructive 
methods, such as the Acoustic Emission (AE) [22], the Digital Image 
Correlation (DIC) [10] or the ultrasonic [31] methods. In addition 
to crack detection itself, non-destructive methods allow a more deta-
iled analysis of reinforced concrete member degradation, which also 
includes determination of reinforcing bar corrosion [28]. This is par-
ticularly important in assessing damage in prefabricated large-block 
buildings, where the basic issue is to determine the technical con-
dition of joints and their reinforcement. Moreover, in recent years, 
alternative approaches based on the use of Machine Learning (ML) 
methods have become increasingly popular, e.g. [28, 29].

Given the specificity of the problem being analysed, especially in 
the context of predicting damage to a large number of building struc-
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tures, ML methods have been selected for further research, as they 
allow the presentation of the phenomenon in probability notation.

The effectiveness of ML tools has been demonstrated in the previ-
ously performed research studies [25, 27]. However, all of the tested 
methods assumed mutual independence of potential causes that might 
affect the damage process. For this reason, it was decided to use the 
so-called Bayesian Network (BN) or Bayesian Belief Network (BBN) 
methodology which, according to [24], allows the possibility of ta-
king conditional independence into account. This allows to build a 
model in which the correlations between individual factors are closer 
to the physical reality associated with the damage emergence process. 
As a result, the established BN structure can be identified with the 
damage risk model.

An additional feature of Bayesian networks, which is a very im-
portant advantage as far as the issue of assessing damage to building 
structures subject to e.g. mining impacts is concerned, is the possibil-
ity to use the created model not only for prediction, but also for the 
diagnosis of damage. This allows for a much broader implementation 
of such a system in practice.

Unfortunately, in the case of a large number of variables describing 
the modelled process, the lack of knowledge of the Bayesian network 
structure is frequently a significant problem. There are methods, ho-
wever, that allow to induce the network structure from data. Accor-
ding to [18], they are divided into 3 groups: constraint-based structu-
re learning, score-based structure learning and hybrid approach. The 
score-based approach has been used in this research paper, and the 
reasons for this selection are explained in Chapter 4.

In order to identify the optimal structure of the Bayesian network, 
two algorithms were tested: Hill-Climbing (HC) and Tabu-Search 
(TS), which belong to the score-based structure learning methods 
[18].

A database containing information on damage to a group of 129 
prefabricated reinforced concrete structures erected in the WBL 
(large-block) industrialised system located in the LGCD mining 
area formed the basis for the analysis (Fig. 1). The information on 
the technical condition, including damage, was collected during the 
“in-situ” surveys and based on the reports. These data were used to 
induce the structures of Bayesian networks and for their subsequent 
testing. The quality of the created models was verified in the context 
of correct classification and generalisation features. Additionally, ha-
ving an explicit representation of correlations between network no-
des, verification was carried out in terms of model compliance with 
the observed, real nature of the modelled process. It was a subjective 
evaluation based on expert knowledge.

Based on the results obtained, the structure of the Bayesian network 
was induced, which could represent a complex damage risk model. 

The basis for the evaluation here was primarily the compliance of 
model classification with learning and testing data.

2. Literature overview
The methodology of Bayesian Networks (BN) or Bayesian Belief 

Networks (BBN) is currently widely used in the analysis of risk [3], 
security [12], reliability [43] and predicting the extent of damage [16]. 
In recent years, implementation of this type of methodology in the 
field of civil engineering has become increasingly popular. However, 
the expert approach dominates here, where the Bayesian network 
structure is imposed, and only model parameters are subject to learn-
ing. When specifying areas convergent to the subject matter discussed 
in this research paper, the issues related to the analysis of the risk 
of damage in building structures could be mentioned. The subject of 
these analyses are mainly linear structures, such as pipelines, bridge 
structures [1] or tunnels [40], but there are also examples regarding 
the evaluation of the risk of damage in buildings [30]. Bayesian net-
works are also used in a broader sense regarding reliability analyses 
[39], including safety assessment [5]. This methodology is used to 
construct diagnostic systems for building structure maintenance man-
agement [20], as well as for the assessment of their technical condi-
tion [21]. In the narrower range, they also appear as systems that al-
low the evaluation of strength parameters of existing structures, both 
static [4] and fatigue [44] ones.

As far as the diversity of building construction types is concerned, 
the Bayesian network methodology is also used for masonry [17] and 
steel structures [7]. In a broader context, it is also frequently used 
as a tool to predict random environmental impacts such as floods, 
earthquakes, tsunamis [13], climate change [37] or land settlement 
[42]. The information obtained from such analyses is, in turn, used 
at both the design stage and the risk assessment of existing building 
structures.

It should be emphasised that the Bayesian network methodology 
has been recently applied in construction engineering also in Poland, 
e.g. to assess the influence of traffic vibrations on surface develop-
ment [36] and to analyse the risk in construction investment of a tun-
nel under the Martwa Wisła river in Gdańsk [14].

However, despite numerous applications of Bayesian network meth-
odology in civil engineering, the use and development of methods for 
network structure discovery from data is still the domain of the sci-
ences such as medicine, biology, genetics, e.g. [9]. For this reason, the 
research presented in this paper is an extension of the methodology 
used so far in civil engineering, which may allow for the analysis of 
more complex engineering problems regarding damage risk analysis or 
structural reliability. The issue being discussed, on Bayesian network 
structure discovery from the data for constructing a damage risk model 

Fig. 1. Examples of buildings constructed using WBL (large-block) industrialised technology 
(own source)
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for building structures subject to mining impacts is, according to the 
authors, an interdisciplinary and innovative approach to the subject.

It should be noted that the Bayesian network methodology, in ad-
dition to the issues related to the reliability and safety of building 
structures, is also an indirect tool used in the risk analysis.  

3.  Characteristics of the database
The database which formed the basis of the research contained de-

tailed information on a group of 129 prefabricated reinforced concrete 
large-sized multi-family and public buildings erected in the industrial-
ised large-block WBL system, e.g. [26]. In each case, at the location 
of the building, indices describing the intensity of mining impacts for 
the duration of the survey were determined (MC, AH and ASG - see 

Table 1). The ASG variable was determined based on the original 
index of mining tremors asg [41] and it expresses the effect of mul-
tiple impacts of mining tremors on the technical wear of buildings. 
The database was supplemented with information on construction and 
material properties, history and quality of maintenance, repairs and 
recorded damage. For damage, the damage index wu developed by 
one of the authors of this research paper was used, referred to both 
structural members and finishing elements [8].

During the initial database analysis, all variables were categorised 
for further use during learning Bayesian networks. It involved assign-
ing labels to individual categories. A list of all variables with the as-
signed range of labels is presented in Table 1. At the later stage, each 
variable will reflect individual nodes in the Bayesian network.

Table 1. List of variables in the database with the assigned label range

LIST OF VARIABLES

DENOTATION DESCRIPTION TYPE OF VARIABLE/
VARIABLE LABEL

DATA ON MINING IMPACTS AT THE LOCATION OF A GIVEN BUILDING STRUCTURE

MC mining area category category / 3 categories

AH maximum horizontal component of acceleration of ground vibrations category / 4 categories

ASG mining tremors intensity index [41] category / 4 categories

INDICES OF DAMAGE TO STRUCTURAL MEMBERS AND FINISHING ELEMENTS

wu2 index of damage to basement or foundation walls category / 4 categories

wu3
index of damage to overground internal and external load-bearing walls 
(including lintels and spandrels) category / 4 categories

wu7 index of damage to higher ceilings, flat roof (covering) category / 4 categories

wu11 index of damage to partition walls category / 2 categories

wu12 index of damage to internal plasters and wall coverings category / 3 categories

wu13 index of damage to floors (floor layers) category / 3 categories

wu17 index of damage to façade (façade layers) category / 4 categories

wu19 index of damage to roofing category / 4 categories

DATA ON MAINTENANCE AND REPAIRS

CR current repairs category / 4 categories

FR façade repairs category / 5 categories

RR roof repairs category / 6 categories

IR interior renovations category / 7 categories

CONSTRUCTION AND BUILDING GEOMETRY DATA

LEN building length (longer of the dimensions) category / 6 categories

NoST number of storeys category / 6 categories

NoSE number of segments category / 8 categories

LoSE length of segment category / 6 categories

DIL dilatation (width) category / 3 categories

SHA building shape category / 4 categories

ToF type of foundation category / 5 categories

SW curtain walls category / 4 categories

BC basement ceiling category / 4 categories

DP design protection category / 3 categories

EP existing protection category / 5 categories

DATA ON DURABILITY

AGE building age category / 4 categories

DUR durability category / 5 categories

TS technical state category / 4 categories
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4. Research methodology
Bayesian Networks (BN), also known as Bayesian Belief Networks 

(BBN) can be represented in the form of a Directed Acyclic Graph 
(DAG) [18]. The structure of the graph (G) encodes information about 
correlations between individual variables { }1, , NX X X= … , which is 
represented by the edges of the graph ( E ) and nodes (V ). In general, 
BBN represents the total probability distribution over a set of random 
variables X , which can be presented as [34]:

 P G P X
i

N
i X Xi i

X | , | ,Θ Π Θ( ) = ( )
=
∏

1

 (1)

gdzie:

( ) , ,G G= X E V  – a structure of an acyclic directed graph

{ }1, , NX X= …X   – a set of all variables present in the graph nodes

( ) ( )1{ , , }ik
i i iX x x= …  – states of j-th variable

E  – a set of all edges
V  – a set of all nodes

( ) ( )1{ , , }i
i

qq
X i ix xΠ = …  – a set of parents, i.e. all nodes of the graph 

determining the state of the node iX
θθ = …{ }θ θX X N1

, ,  – a set of all parameters of conditional relations 
between individual nodes iX , and a set of their par-
ents 

iXΠ

In the case of discrete variables, the parameters of the model 
θXj={θijk} are represented in the form of a multivariate Conditional 
Probability Table (CPT), whose elements are expressed as [11]:

 θ πijk j j
i

X j
kP X x

j
= = =( )( ) ( )|Π  (2)

According to the relationship (1), the total probability distribution 
P GX | ,ΘΘ( )  is subject to decomposition based on conditional local 

distributions ( )| ,
i ii X XP X Π Θ , described over each random variable 

iX  relative to the set of conditioning variables corresponding to it, 
the so-called parents 

iXΠ . This formulation is possible thanks to the 
concept of conditional independence introduced by Pearl in [24]. It 
also allows for an effective analysis of changes in the value of the 
adopted criterion during the search for the optimal network structure.

In the described problem concerning the construction of the dam-
age risk model, both BBN structure and its parameters are unknown. 
In the previous research, significant, but subtle influence of individual 
factors on the damage process has been confirmed. Therefore, at the 
stage of selection of the BBN structure learning method from data, it 
was important that the final model had the largest possible number of 
variables potentially affecting the process of damage initiation. Based 
on the literature [18], constraint-based structure learning methods and 
a hybrid approach were rejected. It was found that in these learning 
methods, more weight is attributed to individual correlations between 
network nodes than to the global response of the model. Thus, the fo-
cus was placed on score-based structure learning methods. Eventually, 
two methods were used: Hill-Climbing (HC) and Tabu-Search (TS).

The HC optimisation approach is one of the greedy-search meth-
ods [35]. It consists in searching the closest environment around the 
current point in space to which a given value of the adopted optimisa-
tion criterion corresponds. Then, a point in the search space whose 
criterion value is higher than in the previous step is selected from 
the environment. The search space is the space of the structures of 
Directed Acyclic Graphs (DAGs), and the algorithm advances by add-
ing, subtracting or swapping correlations between nodes.

The TS approach is a modification of the HC algorithm. This modi-
fication consists in storing a certain number of forbidden paths in the 
search space that have already been traversed in previous iterations, 
and thus limiting blind searching and getting stuck in the local opti-
mum [33].

In this research paper, using the bnlearn package, a comparative 
analysis of both approaches was undertaken. In addition, their per-
formance was tested when various optimisation criteria were adopt-
ed. For this purpose, criteria belonging to two groups were selected: 
Information-Theoretic scores (IT) [2] and Bayesian Dirichlet scores 
(BD) [32]. The first group included: Log-Likelihood (LL), Akaike In-
formation Criterion (AIC) and Bayesian Information Criterion (BIC). 
From the Bayesian Dirichlet scores (BD) group, according to [33], the 
following were used: Bayesian Dirichlet equivalent uniform (BDeu), 
modified Bayesian Dirichlet equivalent score (mBDe), Bayesian 
Dirichlet sparse score (BDs), locally averaged Bayesian Dirichlet 
score (BDla) and the K2 score. The chronological diagram of the per-
formed research is presented in Figure 2.

5. Results of the conducted analyses 
The research used the methodology described in Chapter 3, which 

assumed two approaches to the construction of the Bayesian belief 
network (BBN) structure from data. Both approaches belong to the 
group of score-based structure learning methods [18]. The Hill-
Climbing (HC) algorithm was used as the first one. In the second one, 
its modification, the Tabu-Search (TS) algorithm was used.

The data set on building structures described in Chapter 2 was di-
vided into training and test sets. The key here was to separate the sets 
in such a way that they maintained an even distribution of the values 
of the categorised variables listed in Table 1, i.e.: wu2, wu3, wu7, wu11, 
wu12, wu13, wu17 and wu19. This was finally done using the Stratified 
Sampling (SS) method. As a result, a training set with 105 patterns 
(81.36% of the total number of patterns in the database) and a test set 
whose number of patterns was 24 (18.6%) were obtained.

As far as the bnlearn package used in the analyses is concerned, it 
is possible to take the expert knowledge into account. This is carried 
out by entering a list representing forbidden (Blacklist) and forced 

Fig. 2. Chronological diagram of the carried out analyses
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(Whitelist) correlations. These are strong constraints that are not sub-
ject to modification during the learning process.

This research paper summarises the results of the performed analy-
ses, which aimed to compare the two approaches used. Eventually, 
16 BBN structures were induced and submitted to evaluation. This 

Table 2. Accuracy of classification for individual nodes corresponding to damage indices - training set - algorithm teaching HC

criterion
Accuracy level  HC TRac −  [%]

wu2 wu3 wu7 wu11 wu12 wu13 wu17 wu19

LL 100,00 99,05 99,05 100,00 100,00 100,00 99,05 99,05

AIC 92,38 90,48 85,71 92,38 94,29 95,24 90,48 90,48

BIC 93,33 90,48 89,52 92,38 94,29 90,48 90,48 90,48

BDeu 89,52 91,43 86,67 92,38 94,29 94,29 91,43 93,33

BDs 92,38 93,33 89,52 97,14 97,14 99,05 94,29 92,38

mBDe 91,43 91,43 85,71 92,38 94,29 94,29 91,43 93,33

BDla 90,48 93,33 85,71 97,14 97,14 95,24 95,24 94,29

K2 93,33 90,48 90,48 93,33 91,43 94,29 95,24 90,48

Table 3. Accuracy of classification for individual nodes corresponding to damage indices - test set - algorithm teaching HC

criterion
Accuracy level  HC TSac −  [%]

wu2 wu3 wu7 wu11 wu12 wu13 wu17 wu19

LL 95,83 95,83 79,17 100,00 100,00 100,00 79,17 95,83

AIC 83,33 87,50 75,00 95,83 95,83 100,00 37,50 95,83

BIC 87,50 87,50 79,17 91,67 91,67 91,67 41,67 95,83

BDeu 83,33 87,50 79,17 95,83 95,83 100,00 62,50 100,00

BDs 91,67 91,67 79,17 100,00 100,00 100,00 75,00 100,00

mBDe 83,33 87,50 83,33 95,83 95,83 100,00 66,67 100,00

BDla 83,33 91,67 83,33 100,00 100,00 100,00 87,50 100,00

K2 95,83 83,33 75,00 95,83 100,00 91,67 87,50 95,83

Table 4. Accuracy of classification for individual nodes corresponding to damage indices - training set - algorithm teaching TS

criterion
Accuracy level  TABU TRac −  [%]

wu2 wu3 wu7 wu11 wu12 wu13 wu17 wu19

LL 100,00 99,05 100,00 100,00 100,00 100,00 100,00 100,00

AIC 92,38 90,48 85,71 92,38 94,29 96,19 90,48 90,48

BIC 93,33 90,48 89,52 92,38 94,29 90,48 90,48 90,48

BDeu 91,43 90,48 88,57 92,38 94,29 96,19 91,43 93,33

BDs 95,24 96,19 89,52 97,14 97,14 98,10 94,29 93,33

mBDe 91,43 89,52 86,67 93,33 94,29 94,29 90,48 93,33

BDla 91,43 93,33 86,67 97,14 97,14 95,24 95,24 93,33

K2 93,33 90,48 86,67 89,52 94,29 92,38 95,24 90,48
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resulted from the adoption of two learning algorithms and eight op-
timisation criteria (Information-Theoretic scores (IT) and Bayesian 
Dirichlet scores (BD) - according to Chapter 3).

Before starting the calculations, strong constraints were introduced. 
They excluded from the network those correlations that were contrary 
to logic and were not observed in reality. In total, a set of 427 pairs 
between nodes was created, in which correlations were forbidden. It 
should be noted that no list of inductions was created, leaving free-
dom to individual learning algorithms.

In the first stage, individual structures were evaluated in terms of 
quantity. The basis here was the analysis of the accuracy of classi-
fication and generalisation features of the selected BBN structures. 
A relative measure was used here in the form of a percentage share 
of correctly classified patterns relative to the size of the entire data 
set (training and test set, respectively). These results for individual 
combinations resulting from the adopted learning method and optimi-
sation criterion are contained in Tables 2 ÷ 5. It allowed to assess the 
accuracy of classification and generalisation features of the created 
models. The basis here was simulating network responses in nodes 
corresponding to individual damage indices: wu2, wu3, wu7, wu11, wu12, 
wu13, wu17 and wu19.

In the second stage, the obtained BBN structures were verified in 
terms of quality. This was dictated by practical considerations result-
ing from the possibility of later use of the created model to assess risk 
in construction. Here, the focus was placed on the detected cause-
effect relationships. The evaluation was made in an expert manner, 
based on the authors’ experience in the field of damage to building 
structures in mining areas.

Based on the results of the quantitative analysis, which is repre-
sented by the level of correctly classified patterns for training and 
test sets described by:  , HC TRac −   , , HC TS TABU TR TABU TSac ac ac− − −  
(Tables 2 ÷ 5), it was found that:

LL optimisation criterion leads to the best fitting of training pat- –
terns (Tables 2 and 4), but generates the largest classification 
errors for test sets (Tables 3 and 5). It results therefrom that for 
both the HC and TS methods, the induced BBN structures do 
not have good generalisation features and lead to overfitting a 
model,
the worst results were obtained for the prediction of damage  –
indices wu7 and wu17 - see Tables 3 and 5. The corresponding 
results in the training set reached the value of the correct clas-
sification at the accuracy level 90HC TR HC TSac ac− −≈ ≈ . The 
difference between the results for the training and test sets in-
dicates overfitting the model in the prediction of wu7 and wu17 
indices.

the best results in relation to the prediction of the values of dam- –
age indices wu7 and wu17, both in the training and test sets, were 
obtained by adopting the BDla and K2 measures as the optimi-
sation criteria - see Tables 3 and 5,
in the case of prediction of other damage indices:  – wu2, wu3, wu11, 
wu12, wu13 and wu19, apart from the LL criterion, both learning 
methods generate models achieving a very high level of accu-
racy in simulations, both in the training and test sets. The choice 
of individual optimisation criteria has no significant influence 
here.

As part of the first stage, i.e. the quantitative evaluation, a total 
of 4 structures were induced for which the best prediction results 
were obtained for all damage indices (including the wu7 and wu17 in-
dices) and their generalisation features were confirmed. These were 
structures created by the HC and TS methods using the optimisation 
criteria BDla and K2. The results in graphical form are presented in 
Figures 3 to 6.

In the case of the BBN structure obtained by the HC method and 
BDla criterion (Fig. 3), it can be noticed that two nodes represent-
ing variables are omitted: NoSE and LoSE. The same applies to the 
structure selected by the TS method and the BDla criterion. Only one 
node indicating the LoSE variable is omitted here. The NoSE variable 
appears in the overall structure of the BBN network – Fig. 4.

On the other hand, in the case of the K2 criterion, regardless of 
the learning algorithm used, the LoSE, NoSE, LEN, DIL, and SHA 
nodes remain outside the selected structures (Figures 5 and 6).

Table 5. Accuracy of classification for individual nodes corresponding to damage indices - test set - algorithm teaching TS

criterion Accuracy level  TABU TSac −  [%]

wu2 wu3 wu7 wu11 wu12 wu13 wu17 wu19

LL 95,83 95,83 79,17 100,00 100,00 100,00 79,17 95,83

AIC 83,33 87,50 70,83 95,83 95,83 100,00 50,00 95,83

BIC 87,50 87,50 79,17 91,67 91,67 91,67 54,17 95,83

BDeu 87,50 87,50 87,50 95,83 95,83 100,00 66,67 100,00

BDs 91,67 91,67 83,33 100,00 100,00 100,00 66,67 100,00

mBDe 83,33 87,50 83,33 95,83 95,83 100,00 66,67 100,00

BDla 83,33 91,67 87,50 95,83 100,00 100,00 79,17 100,00

K2 95,83 91,67 79,17 91,67 91,67 91,67 87,50 95,83

Fig. 3. The BBN structure extracted by the HC method using the BDla optimi-
sation criterion
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Geometrical features of a given object (see Table 1) influence its 
durability [27], and thus also on the risk of damage. Therefore, based 
on the authors’ many years of experience, it seems that models rep-
resented by BBN network structures selected using the TS algorithm 
and the BDla criterion are closer to reality - see Figure 4. In this case, 

the most complete description of the analysed problem was ob-
tained, taking into account the set of active variables included in 
the BBN network represented by individual nodes. 

6. Summary
The paper presents the results of analyses regarding the con-

struction of the Bayesian network (BN) for predicting the extent 
and evaluation of damage to building structures subject to mining 
impacts. Due to the fact that the established Bayesian network rep-
resents the resulting likelihood of the occurrence of damage and 
all factors determining their emergence, it can become a model for 
assessing the risk of damage. Ultimately, this model was devel-
oped based on the information on 129 large-sized multi-family and 
public buildings with a prefabricated reinforced concrete structure 
erected in the WBL (large-block) industrialised construction sys-
tem. The database collected information about the construction and 
material properties, quality of maintenance, as well as data on the 
evaluation of damage to members and mining impacts. Then, as-
suming two algorithms for learning Bayesian network structures 
from data (Hill-Climbing and Tabu-Search) and 8 different opti-
misation criteria, 16 Bayesian network structures were induced for 
the purpose of predicting the extent of damage and probability of 
its occurrence.

The Bayesian networks obtained were subjected to quantitative 
and qualitative evaluation. The quantitative evaluation consisted of 
verifying the compliance of prediction of individual networks with 
the data from training and test sets. Thus, the degree of generalisa-
tion of the acquired knowledge was also checked. As a result of 
these analyses, four structures were induced which were subjected 
to further qualitative analysis. During the qualitative analysis, the 
completeness of the created structures was assessed in terms of ac-
tively connected nodes representing individual variables potentially 
influencing the occurrence of the damage process. The result was a 
narrowing of pre-selected networks from the quantitative analysis 
stage to one model. This model was created using the Tabu-Search 
algorithm using the BDla optimisation criterion.

The risk model created in the form of a Bayesian network, re-
sulting from learning the DAG structure based on data, has several 
very significant advantages:

It offers the possibility to both predict the probability of dam- –
age occurrence as well as diagnose the causes of its occurrence. 
Therefore, it can be used as a tool to estimate the risk of damage 
for a large number of building structures located in a mining 
area.
It enables the interpretation of cause-and-effect relationships,  –
which broaden the knowledge about the modelled phenome-
non, especially in the case of the effect of variables regarding 
the quality of object maintenance.
It allows to make inferences about any variable contained in the  –
DAG structure representing the Bayesian network.
It can be used in the absence of accurate information on the  –
state of variables in individual nodes. Therefore, it enables the 
model to be used in the uncertainty area.
It can be easily updated when new data is recorded resulting  –
from observation of the actual course of a given process.

In addition, this type of methodology has a much broader 
implementation than just for the assessment of mining impacts. 
Examples include: Structure Health Monitoring or Maintenance 
Management.

The obtained results give rise to further research in this area, 
both in terms of analysing other types of building structures as 

well as testing other methods that allow learning Bayesian network 
structures from data.

Fig. 4. The BBN structure extracted by the TS method using the BDla optimisation 
criterion

Fig. 5. The BBN structure extracted by the HC method using the K2 optimisation 
criterion

Fig. 6. The BBN structure extracted by the TS method using the K2 optimisation crite-
rion
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